• News
      • Appointments
      • EV Powertrain
      • Emissions
      • Engine Components
      • Electronics
      • Facility Developments
      • Forced Induction
      • Fuel Cell Technologies
      • Fuels & Lubricants
      • Heavy-duty & Diesel Engine Technologies
      • Hybrid Powertrain Technologies
      • Industry Forecasting
      • Legislation
      • Materials & Surface Treatment
      • Metallurgy
      • Mild-hybrid & 48V Technologies
      • New powertrain
      • Partnerships, Investments & Acquisitions
      • Quality Control
      • Prototyping
      • Sustainable fuels
      • Testing
      • Traction Control Systems
      • Transmissions Technologies
      • Webinars
  • Features
  • Online Magazines
    • March 2025
    • January 2025
    • September 2024
    • June 2024
    • Subscribe to Automotive Powertrain Technology
    • Transmission Technology International
    • Subscribe to Transmission Technology
  • Opinion
  • Events
  • Supplier Spotlight
  • Webinars
Facebook Twitter Instagram
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
LinkedIn Facebook
Subscribe
Automotive Powertrain Technology International
  • News
      • Appointments
      • EV Powertrain
      • Emissions
      • Engine Components
      • Electronics
      • Facility Developments
      • Forced Induction
      • Fuel Cell Technologies
      • Fuels & Lubricants
      • Heavy-duty & Diesel Engine Technologies
      • Hybrid Powertrain Technologies
      • Industry Forecasting
      • Legislation
      • Materials & Surface Treatment
      • Metallurgy
      • Mild-hybrid & 48V Technologies
      • New powertrain
      • Partnerships, Investments & Acquisitions
      • Quality Control
      • Prototyping
      • Sustainable fuels
      • Testing
      • Traction Control Systems
      • Transmissions Technologies
      • Webinars
  • Features
  • Online Magazines
    1. March 2025
    2. January 2025
    3. September 2024
    4. June 2024
    5. Subscribe to Automotive Powertrain Technology
    6. Transmission Technology International
    7. Subscribe to Transmission Technology
    Featured

    In this Issue – March 2025

    By Lawrence ButcherMarch 27, 2025
    Recent

    In this Issue – March 2025

    March 27, 2025

    In this Issue – January 2025

    December 9, 2024

    In this Issue – September 2024

    September 26, 2024
  • Opinion
  • Events
  • Supplier Spotlight
  • Webinars
LinkedIn Facebook
Subscribe
Automotive Powertrain Technology International
Engine Components

Battery materials from deep-sea resources?

Lawrence ButcherBy Lawrence ButcherSeptember 21, 20204 Mins Read
LinkedIn Twitter Facebook Email
Share
LinkedIn Twitter Facebook Email

New research shows that polymetallic rocks found on the deep-ocean floor have the potential to supply hundreds of millions of tons of the metals needed for the production of batteries.

A peer-reviewed study, published in the Journal of Cleaner Production, shows a comparative lifecycle assessment of EV battery metal sources, quantifying the direct and indirect emissions and disruptions to carbon sequestration services realized in the mining, processing and refining of battery metals. `

Entitled Life Cycle Climate Change Impacts of Producing Battery Metals from Land Ores versus Deep-Sea Polymetallic Nodules, the paper starts with a demand scenario of producing four metals (nickel, cobalt, manganese, copper) to supply one billion 75kWh EV batteries with a cathode chemistry of NMC 811 (80% nickel, 10% manganese, 10% cobalt). It then compares the climate change impacts of supplying these four metals from two sources: conventional ores found on land and polymetallic rocks with high concentrations of four metals in a single ore, found unattached on the seafloor at 4-6km depth.

“We wanted to assess how metal production using either land ores or polymetallic nodules can contribute to climate change. Looking from mining to processing and refining, we quantified three indicators for each ore type: direct and indirect carbon-dioxide-equivalent emissions, disturbance of existing sequestered-carbon stores, and disruption of future carbon-sequestration services. These three indicators directly impact the remaining global carbon budget to stay below 1.5C warming,” explained the study’s lead author, Daina Paulikas, of the University of Delaware’s Center for Minerals, Materials and Society.

The study found that producing battery metals from nodules can reduce active human emissions of CO2  by 70-75%, stored carbon at risk by 94% and disruption of carbon sequestration services by 88%.

“Terrestrial miners are handicapped by challenges like falling ore grades, as lower concentrations of metal lead to greater requirements of energy, materials and land area to produce the same amount of metal. Furthermore, nodule collection has a relatively low energy, land and waste footprint compared to mining on land. When it comes to emissions, even when we assume a complete phase-out of coal use from electric grids powering terrestrial mines and plants, our model shows that metal production from high-grade polymetallic nodules can still retain a 70% advantage,” continued Paulikas.

“What happens to carbon sinks on land and on the seafloor used for metal production is another big part of the climate impact story,” added Dr Steven Katona, marine biologist and co-founder of the Ocean Health Index, who contributed to the study. “On land, carbon is stored in vegetation, soil and detritus. On the seafloor, carbon is stored in sediments and seawater. Producing metals for one billion EVs from land ores would disrupt 156,000km2 of land and 2,100km2  of seabed for deep-sea tailings disposal. Producing the same amount from nodules would disrupt 508,000km2  of the seafloor during nodule collection and 9,800km2  of land during metallurgical processing.

“Despite disturbing a larger area of the seafloor, metal production from nodules would cause much less carbon disruption. This is because seafloor sediments store 15 times less carbon per square kilometer than an average terrestrial biome and there is no known mechanism for disturbed seafloor sediment to rise to the surface and impact atmospheric carbon.

“In contrast, mining on land requires removal of forests, other vegetation and topsoil to access the ore, store waste and build infrastructure. In the process, we lose stored carbon and disrupt carbon sequestration services for as long as land remains in use, which can be as long as 30-100 years.”

The paper’s researchers found that polymetallic nodules could deliver metals for one billion EV batteries with up to 11.6Gt less of CO2  compared with terrestrial sources. This represents a significant potential saving given the remaining carbon budget of just 235Gt for a 66% probability of staying at 1.5°C global warming.

“We hope this work motivates others to dive deeper into supply chain analysis for the clean energy transition, and specifically to pay attention to the impacts of producing critical minerals like the ones we studied,” concluded Paulikas.

The researchers’ focus on climate change impacts builds on a larger study, Where Should Metals For the Green Transition Come From?, which compares a range of social and environmental impacts and was commissioned by DeepGreen Metals, a company seeking to collect polymetallic rocks to supply electric vehicles under a blockchain-enabled system to rent and reuse battery materials.

Share. LinkedIn Twitter Facebook Email

Related Posts

Conflux Technology develops bespoke heat-exchanger for Pagani Utopia hypercar

June 3, 2025

AKM and SAL integrate current sensor into power module

May 1, 2025

A sealing leader in the era of electrification

April 25, 2025
LATEST NEWS

Conflux Technology develops bespoke heat-exchanger for Pagani Utopia hypercar

June 3, 2025

Toyota enters Fuji 24h with hydrogen- and E20-powered cars

June 2, 2025

EXPO INTERVIEW: Enrico Neumann, product manager at IAV

May 30, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Vehicle Electrification Expo
Featured Listings
  • Wattalps
Getting in Touch
  • Contact Us
  • Download Media Pack
  • Meet the Editors
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
Related UKi Topics
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by