• News
      • Appointments
      • EV Powertrain
      • Emissions
      • Engine Components
      • Electronics
      • Facility Developments
      • Forced Induction
      • Fuel Cell Technologies
      • Fuels & Lubricants
      • Heavy-duty & Diesel Engine Technologies
      • Hybrid Powertrain Technologies
      • Industry Forecasting
      • Legislation
      • Materials & Surface Treatment
      • Metallurgy
      • Mild-hybrid & 48V Technologies
      • New powertrain
      • Partnerships, Investments & Acquisitions
      • Quality Control
      • Prototyping
      • Sustainable fuels
      • Testing
      • Traction Control Systems
      • Transmissions Technologies
      • Webinars
  • Features
  • Online Magazines
    • March 2025
    • January 2025
    • September 2024
    • June 2024
    • Subscribe to Automotive Powertrain Technology
    • Transmission Technology International
    • Subscribe to Transmission Technology
  • Opinion
  • Events
  • Supplier Spotlight
  • Webinars
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
Facebook Twitter Instagram
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
LinkedIn Facebook
Subscribe
Automotive Powertrain Technology International
  • News
      • Appointments
      • EV Powertrain
      • Emissions
      • Engine Components
      • Electronics
      • Facility Developments
      • Forced Induction
      • Fuel Cell Technologies
      • Fuels & Lubricants
      • Heavy-duty & Diesel Engine Technologies
      • Hybrid Powertrain Technologies
      • Industry Forecasting
      • Legislation
      • Materials & Surface Treatment
      • Metallurgy
      • Mild-hybrid & 48V Technologies
      • New powertrain
      • Partnerships, Investments & Acquisitions
      • Quality Control
      • Prototyping
      • Sustainable fuels
      • Testing
      • Traction Control Systems
      • Transmissions Technologies
      • Webinars
  • Features
  • Online Magazines
    1. March 2025
    2. January 2025
    3. September 2024
    4. June 2024
    5. Subscribe to Automotive Powertrain Technology
    6. Transmission Technology International
    7. Subscribe to Transmission Technology
    Featured

    In this Issue – March 2025

    By Lawrence ButcherMarch 27, 2025
    Recent

    In this Issue – March 2025

    March 27, 2025

    In this Issue – January 2025

    December 9, 2024

    In this Issue – September 2024

    September 26, 2024
  • Opinion
  • Events
  • Supplier Spotlight
  • Webinars
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn Facebook
Subscribe
Automotive Powertrain Technology International
Features

WMG details the graphene battery technology that could double EV battery life

Dean SlavnichBy Dean SlavnichFebruary 1, 20183 Mins Read
LinkedIn Twitter Facebook Email
Mahle Powertrain reveals how it supports powertrain development amid tightening regulations
Share
LinkedIn Twitter Facebook Email

New research led by WMG at the University of Warwick has utilized graphene girder reinforcement to replace the graphite in the anodes of lithium-ion batteries with silicon. The result is electrodes with extended lifetime. This means that is possible to create a rechargeable lithium-ion-based battery with twice the lifecycle.

Graphite has been the default choice for anodes in lithium-ion batteries since their original launch by Sony; but researchers and manufacturers have long sought a way to replace graphite with silicon, as it is an abundantly available element with 10 times the gravimetric energy density of graphite. Unfortunately, silicon has performance issues that continue to limit its commercial exploitation.

Due to volume expansion upon lithiation, silicon particles can electrochemically agglomerate in ways that impede further charge-discharge efficiency over time. Silicon is also not intrinsically elastic enough to cope with the strain of lithiation when it is repeatedly charged, leading to cracking, pulverization and rapid physical degradation of the anode’s composite microstructure. This contributes significantly to capacity fade, along with degradation events that occur on the counter electrode – the cathode.

Numerous approaches have attempted to overcome these issues. The use of nano-sized and structured silicon particles with micron-sized graphene for example, but this has proved unsatisfactory. Using nano-sized silicon particles dramatically increases the amount of reactive surface available.

This leads to much more lithium being deposited on the silicon during the first charge cycle, therefore forming a solid-electrolyte interphase barrier between the silicon and the electrolyte, and thus greatly reducing the lithium inventory.

This layer also continues to grow on silicon and so the lithium loss becomes continuous. Other methods of incorporating other materials such as graphene at different sizes have been deemed impractical for large–scale production.

However new research, led by WMG has developed a new anode mixture of silicon and a form of chemically modified graphene which could resolve these issues and create viable silicon anode lithium-ion batteries. Such an approach could be manufactured on an industrial scale and without the need to resort to nano sizing of silicon and its associated problems.

Graphene is of course a single, one atom thick layer of the mineral graphite. However, it also possible to separate and manipulate a few connected layers of graphene, which gives a material that researchers refer to as few-layer graphene (FLG).

Previous research has tested the use of FLG with nano-sized silicon but this new study has found that FLG can also dramatically improve the performance of larger micron-sized silicon particles when used in an anode. So much so that this mixture could significantly extend the life of lithium-ion batteries and also offer increased power capability.

The researchers created anodes that were a mixture of 60% micro silicon particles, 16% FLG, 14% Sodium/Polyacrylic acid, and 10% carbon additives, and then examined the performance over a 100 charge-discharge cycles.

The WMG research team has already begun further work on this technology, including further study and research as part of the graphene spearhead two-year project led by Varta Micro-innovations. The main goal of that project is to advance in pre-industrial production of silicon/graphene composites and their subsequent processing into lithium-ion batteries for high-energy and high-power applications.

February 1, 2018

Share. LinkedIn Twitter Facebook Email

Related Posts

GaN: The next frontier

February 27, 2025

Tech Insider: VAG EA888 Evo 5

December 30, 2024

Tech Insider: Bugatti Cosworth V16

December 28, 2024
LATEST NEWS

CATL releases trio of battery technologies

April 24, 2025

Toyota invests US$88m in hybrid transaxle assembly line at West Virginia plant

April 24, 2025

Next-gen Honda fuel cell module to make North America debut

April 24, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Haltermann Carless Deutschland GmbH
Featured Listings
  • Wattalps
Getting in Touch
  • Contact Us
  • Download Media Pack
  • Meet the Editors
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
Related UKi Topics
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by