• News
      • Appointments
      • EV Powertrain
      • Emissions
      • Engine Components
      • Electronics
      • Facility Developments
      • Forced Induction
      • Fuel Cell Technologies
      • Fuels & Lubricants
      • Heavy-duty & Diesel Engine Technologies
      • Hybrid Powertrain Technologies
      • Industry Forecasting
      • Legislation
      • Materials & Surface Treatment
      • Metallurgy
      • Mild-hybrid & 48V Technologies
      • New powertrain
      • Partnerships, Investments & Acquisitions
      • Quality Control
      • Prototyping
      • Sustainable fuels
      • Testing
      • Traction Control Systems
      • Transmissions Technologies
      • Webinars
  • Features
  • Online Magazines
    • June 2025
    • March 2025
    • January 2025
    • September 2024
    • Subscribe to Automotive Powertrain Technology
    • Transmission Technology International
    • Subscribe to Transmission Technology
  • Opinion
  • Events
  • Supplier Spotlight
  • Webinars
Facebook Twitter Instagram
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn Facebook
Subscribe
Automotive Powertrain Technology International
  • News
      • Appointments
      • EV Powertrain
      • Emissions
      • Engine Components
      • Electronics
      • Facility Developments
      • Forced Induction
      • Fuel Cell Technologies
      • Fuels & Lubricants
      • Heavy-duty & Diesel Engine Technologies
      • Hybrid Powertrain Technologies
      • Industry Forecasting
      • Legislation
      • Materials & Surface Treatment
      • Metallurgy
      • Mild-hybrid & 48V Technologies
      • New powertrain
      • Partnerships, Investments & Acquisitions
      • Quality Control
      • Prototyping
      • Sustainable fuels
      • Testing
      • Traction Control Systems
      • Transmissions Technologies
      • Webinars
  • Features
  • Online Magazines
    1. June 2025
    2. March 2025
    3. January 2025
    4. September 2024
    5. Subscribe to Automotive Powertrain Technology
    6. Transmission Technology International
    7. Subscribe to Transmission Technology
    Featured

    In this Issue – June 2025

    By Web TeamJune 25, 2025
    Recent

    In this Issue – June 2025

    June 25, 2025

    In this Issue – March 2025

    March 27, 2025

    In this Issue – January 2025

    December 9, 2024
  • Opinion
  • Events
  • Supplier Spotlight
  • Webinars
LinkedIn Facebook
Subscribe
Automotive Powertrain Technology International
Features

New self-assembling material could be the key to recyclable EV batteries

Zach WinnBy Zach WinnSeptember 4, 20256 Mins Read
LinkedIn Twitter Facebook Email
A depiction of batteries made with MIT researchers’ new electrolyte material, which is made from a class of molecules that self-assemble in water, named aramid amphiphiles (AAs), whose chemical structures and stability mimic Kevlar. (MIT News)
Credit: MIT News
Share
LinkedIn Twitter Facebook Email

Originally published by MIT News

Today’s electric vehicle boom is tomorrow’s mountain of electronic waste. And while myriad efforts are underway to improve battery recycling, many EV batteries still end up in landfills.

A research team from MIT wants to help change that with a new kind of self-assembling battery material that quickly breaks apart when submerged in a simple organic liquid. In a paper published in Nature Chemistry, the researchers showed the material can work as the electrolyte in a functioning, solid-state battery cell and then revert to its original molecular components in minutes.

The approach offers an alternative to shredding the battery into a mixed, hard-to-recycle mass. Instead, because the electrolyte serves as the battery’s connecting layer, when the alternative material returns to its original molecular form, the entire battery disassembles to accelerate the recycling process.

“So far in the battery industry, we’ve focused on high-performing materials and designs, and only later tried to figure out how to recycle batteries made with complex structures and hard-to-recycle materials,” says the paper’s first author, Yukio Cho PhD. “Our approach is to start with easily recyclable materials and figure out how to make them battery-compatible. Designing batteries for recyclability from the beginning is a new approach.”

Joining Cho on the paper are PhD candidate Cole Fincher, Ty Christoff-Tempesta PhD, Kyocera professor of ceramics Yet-Ming Chiang, visiting associate professor Julia Ortony, Xiaobing Zuo and Guillaume Lamour.

Better batteries

There’s a scene in one of the Harry Potter films where Professor Dumbledore cleans a dilapidated home with the flick of the wrist and a spell. Cho says that the image stuck with him as a kid. When he saw a talk by Ortony on engineering molecules so that they could assemble into complex structures and then revert to their original form, he wondered if this technique could be used to make battery recycling work like magic.

That would be a paradigm shift for the battery industry. Today, battery recycling requires harsh chemicals, high heat and complex processing . There are three main parts of a battery: the positively charged cathode, the negatively charged electrode and the electrolyte that shuttles lithium ions between them. The electrolytes in most lithium-ion batteries are highly flammable and degrade over time into toxic byproducts that require specialized handling.

A rendering shows (left) the mPEGAA molecule designed by researchers, (middle) how the molecules self assemble into nanoribbons, and (right) how the molecules are used for the battery electrolyte. (MIT News)
A rendering shows (left) the mPEGAA molecule designed by researchers, (middle) how the molecules self-assemble into nanoribbons, and (right) how the molecules are used for the battery electrolyte. Credit: MIT News

To simplify the recycling process, the researchers decided to make a more sustainable electrolyte. For that, they turned to a class of molecules that self-assemble in water, named aramid amphiphiles (AAs), whose chemical structures and stability mimic that of Kevlar. The researchers further designed the AAs to contain polyethylene glycol (PEG), which can conduct lithium ions, on one end of each molecule. When the molecules are exposed to water, they spontaneously form nanoribbons with ion-conducting PEG surfaces and bases that imitate the robustness of Kevlar through tight hydrogen bonding. The result is a mechanically stable nanoribbon structure that conducts ions across its surface.

“The material is composed of two parts,” Cho explains. “The first part is this flexible chain that gives us a nest, or host, for lithium ions to jump around. The second part is this strong organic material component that is used in the Kevlar, which is a bulletproof material. Those make the whole structure stable.”

When added to water, the nanoribbons self-assemble to form millions of nanoribbons that can be hot-pressed into a solid-state material.

“Within five minutes of being added to water, the solution becomes gel-like, indicating there are so many nanofibers formed in the liquid that they start to entangle each other,” Cho says. “What’s exciting is we can make this material at scale because of the self-assembly behavior.”

The team tested the material’s strength and toughness, finding it could endure the stresses associated with making and running the battery. They also constructed a solid-state battery cell that used lithium iron phosphate for the cathode and lithium titanium oxide as the anode, both common materials in today’s batteries. The nanoribbons moved lithium ions successfully between the electrodes, but a side-effect known as polarization limited the movement of lithium ions into the battery’s electrodes during fast bouts of charging and discharging, hampering its performance compared with today’s gold-standard commercial batteries.

“The lithium ions moved along the nanofiber all right, but getting the lithium ion from the nanofibers to the metal oxide seems to be the most sluggish point of the process,” Cho says.

When they immersed the battery cell in organic solvents, the material immediately dissolved, with each part of the battery falling away for easier recycling. Cho compared the materials’ reaction to cotton candy being submerged in water.

“The electrolyte holds the two battery electrodes together and provides the lithium-ion pathways,” Cho says. “So, when you want to recycle the battery, the entire electrolyte layer can fall off naturally and you can recycle the electrodes separately.”

Validating a new approach

Cho says the material is a proof of concept that demonstrates the recycle-first approach.

“We don’t want to say we solved all the problems with this material,” Cho says. “Our battery performance was not fantastic because we used only this material as the entire electrolyte for the paper, but what we’re picturing is using this material as one layer in the battery electrolyte. It doesn’t have to be the entire electrolyte to kick off the recycling process.”

Cho also sees a lot of room for optimizing the material’s performance with further experiments.

Now, the researchers are exploring ways to integrate these kinds of materials into existing battery designs, and implementing the ideas into new battery chemistries.

“It’s very challenging to convince existing vendors to do something very differently,” Cho says. “But with new battery materials that may come out in five or 10 years, it could be easier to integrate this into new designs in the beginning.”

Cho also believes the approach could help reshore lithium supplies by reusing materials from batteries that are already in the US.

“People are starting to realize how important this is,” Cho says. “If we can start to recycle lithium-ion batteries from battery waste at scale, it’ll have the same effect as opening lithium mines in the US. Also, each battery requires a certain amount of lithium, so extrapolating out the growth of electric vehicles, we need to reuse this material to avoid massive lithium price spikes.”

The work was supported, in part, by the National Science Foundation and the US Department of Energy. It was performed, in part, using the MIT Characterization.nano facilities.

Share. LinkedIn Twitter Facebook Email

Related Posts

Hyundai/GM alliance powers forward with five all-new vehicles

August 12, 2025

Sponsored: XL O-Rings for e-powertrains

July 7, 2025

Interview: ZeBeyond powertrain optimization

June 25, 2025
LATEST NEWS

Infineon expands converter portfolio for EVs

September 5, 2025

New self-assembling material could be the key to recyclable EV batteries

September 4, 2025

Classic Mini EV conversion kit developed by Electrogenic and Exedy

September 4, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • FVA Software & Service
Featured Listings
  • Wattalps
Getting in Touch
  • Contact Us
  • Download Media Pack
  • Meet the Editors
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
Related UKi Topics
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by