• News
      • Appointments
      • EV Powertrain
      • Emissions
      • Engine Components
      • Electronics
      • Facility Developments
      • Forced Induction
      • Fuel Cell Technologies
      • Fuels & Lubricants
      • Heavy-duty & Diesel Engine Technologies
      • Hybrid Powertrain Technologies
      • Industry Forecasting
      • Legislation
      • Materials & Surface Treatment
      • Metallurgy
      • Mild-hybrid & 48V Technologies
      • New powertrain
      • Partnerships, Investments & Acquisitions
      • Quality Control
      • Prototyping
      • Sustainable fuels
      • Testing
      • Traction Control Systems
      • Transmissions Technologies
      • Webinars
  • Features
  • Online Magazines
    • March 2025
    • January 2025
    • September 2024
    • June 2024
    • Subscribe to Automotive Powertrain Technology
    • Transmission Technology International
    • Subscribe to Transmission Technology
  • Opinion
  • Events
  • Supplier Spotlight
  • Webinars
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
Facebook Twitter Instagram
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
LinkedIn Facebook
Subscribe
Automotive Powertrain Technology International
  • News
      • Appointments
      • EV Powertrain
      • Emissions
      • Engine Components
      • Electronics
      • Facility Developments
      • Forced Induction
      • Fuel Cell Technologies
      • Fuels & Lubricants
      • Heavy-duty & Diesel Engine Technologies
      • Hybrid Powertrain Technologies
      • Industry Forecasting
      • Legislation
      • Materials & Surface Treatment
      • Metallurgy
      • Mild-hybrid & 48V Technologies
      • New powertrain
      • Partnerships, Investments & Acquisitions
      • Quality Control
      • Prototyping
      • Sustainable fuels
      • Testing
      • Traction Control Systems
      • Transmissions Technologies
      • Webinars
  • Features
  • Online Magazines
    1. March 2025
    2. January 2025
    3. September 2024
    4. June 2024
    5. Subscribe to Automotive Powertrain Technology
    6. Transmission Technology International
    7. Subscribe to Transmission Technology
    Featured

    In this Issue – March 2025

    By Lawrence ButcherMarch 27, 2025
    Recent

    In this Issue – March 2025

    March 27, 2025

    In this Issue – January 2025

    December 9, 2024

    In this Issue – September 2024

    September 26, 2024
  • Opinion
  • Events
  • Supplier Spotlight
  • Webinars
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn Facebook
Subscribe
Automotive Powertrain Technology International
Features

Cummins turbocharger containment and wheel burst testing

Dean SlavnichBy Dean SlavnichJuly 22, 20164 Mins Read
LinkedIn Twitter Facebook Email
Share
LinkedIn Twitter Facebook Email

Mike Eastwood, group leader for structural analysis at Cummins Turbo Technologies, explains the process that the team took and how it overcame challenges.

Why did you conduct this research?

There is a safety requirement for turbochargers, in that if a wheel burst occurs, all fragments of the wheel and housing must be contained within the housing without puncture of the outer surface – this is called ‘containment’. Cummins Turbo Technologies has used Ansys analysis products for almost 25 years. As part of this ongoing relationship, it was suggested that we may be able to use the Autodyn explicit package, as supplied by Ansys, to perform turbine end burst simulation, to allow optimization of design to achieve containment.

As part of the Cummins Analysis Led Design (ALD) initiative, we thought there might be an opportunity to reduce the concept design cycle time by optimizing the turbine housing design using analysis to enable containment. The second reason was to optimize the weakening slot to cause wheel burst at the required speed, again cutting down on the amount of testing required. Replacing testing with analysis helps cut down costs.

What was your role on the project and how long did it take?

My role was supervisor to the paper’s author (Lin Wang). I have had some experience in the area of impact analysis using LS-Dyna for turbine housing containment prediction around 17 years ago. Wang took advice from Alex Pett at Ansys on explicit analysis. It took a few months to develop and correlate the turbine housing containment technique and a further few months to develop and correlate the wheel burst with weakening slot technique.

What were the project’s goals?

The aim of the project was to use analysis to simulate the turbine end burst test in order to cut down on the amount of physical testing required. There would be two savings at the turbine end. The first saving was using analysis to help design a turbine housing that could pass the burst test first time by absorbing enough kinetic energy and not allowing turbine wheel fragments to escape.

This would prevent a ‘design – test – design’ trial-and-error approach and its associated cost implications. The second saving was to create the dimensions of the required weakening slot to allow the turbine wheel to burst at the required speed on test, again preventing a trial-and-error approach.

What did you do, and what challenges did you encounter?

The turbine housing containment model was built gradually, considering geometry; meshing; material properties; material plasticity and fracture models; wheel speed; and thermal and structural boundary conditions. This was carried out until we were satisfied in a number of cases that simulating was correlating well to real burst test data. We also showed the method and results in a number of Cummins functional excellence forums along the way to gain feedback.

For a highly non-linear problem, a large number of iterations have to be carried out before finding the equilibrium, thus the global stiffness matrix has to be assembled and inverted many times during the analysis. Time steps during solution also have to be very small, therefore, the computation is extremely expensive and memory requirements are also very high. It is difficult to predict how long it will take to solve the problem or even if convergence can be achieved.

What was the end result?

We have achieved good correlation to test over a number of simulations, allowing us to standardize analysis and test techniques. The next step for the company is to look at compressor end containment and other areas of the turbocharger where explicit analysis may be helpful, such as parts of the manufacturing process requiring non-linear explicit analysis for simulation.

Uploaded 22 July 2016

Share. LinkedIn Twitter Facebook Email

Related Posts

GaN: The next frontier

February 27, 2025

Tech Insider: VAG EA888 Evo 5

December 30, 2024

Tech Insider: Bugatti Cosworth V16

December 28, 2024
LATEST NEWS

Simplify product development for different vehicle segments with Marelli

April 22, 2025

Genesis Magma Racing fires up WRC-derived LMDh V8 for first time

April 22, 2025

Upfit UTV and OMMI launch off-road hybrid system

April 17, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • EUtech Scientific Engineering GmbH
Featured Listings
  • Wattalps
Getting in Touch
  • Contact Us
  • Download Media Pack
  • Meet the Editors
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
Related UKi Topics
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by