• News
      • Appointments
      • EV Powertrain
      • Emissions
      • Engine Components
      • Electronics
      • Facility Developments
      • Forced Induction
      • Fuel Cell Technologies
      • Fuels & Lubricants
      • Heavy-duty & Diesel Engine Technologies
      • Hybrid Powertrain Technologies
      • Industry Forecasting
      • Legislation
      • Materials & Surface Treatment
      • Metallurgy
      • Mild-hybrid & 48V Technologies
      • New powertrain
      • Partnerships, Investments & Acquisitions
      • Quality Control
      • Prototyping
      • Sustainable fuels
      • Testing
      • Traction Control Systems
      • Transmissions Technologies
      • Webinars
  • Features
  • Online Magazines
    • March 2025
    • January 2025
    • September 2024
    • June 2024
    • Subscribe to Automotive Powertrain Technology
    • Transmission Technology International
    • Subscribe to Transmission Technology
  • Opinion
  • Events
  • Supplier Spotlight
  • Webinars
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
Facebook Twitter Instagram
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
LinkedIn Facebook
Subscribe
Automotive Powertrain Technology International
  • News
      • Appointments
      • EV Powertrain
      • Emissions
      • Engine Components
      • Electronics
      • Facility Developments
      • Forced Induction
      • Fuel Cell Technologies
      • Fuels & Lubricants
      • Heavy-duty & Diesel Engine Technologies
      • Hybrid Powertrain Technologies
      • Industry Forecasting
      • Legislation
      • Materials & Surface Treatment
      • Metallurgy
      • Mild-hybrid & 48V Technologies
      • New powertrain
      • Partnerships, Investments & Acquisitions
      • Quality Control
      • Prototyping
      • Sustainable fuels
      • Testing
      • Traction Control Systems
      • Transmissions Technologies
      • Webinars
  • Features
  • Online Magazines
    1. March 2025
    2. January 2025
    3. September 2024
    4. June 2024
    5. Subscribe to Automotive Powertrain Technology
    6. Transmission Technology International
    7. Subscribe to Transmission Technology
    Featured

    In this Issue – March 2025

    By Lawrence ButcherMarch 27, 2025
    Recent

    In this Issue – March 2025

    March 27, 2025

    In this Issue – January 2025

    December 9, 2024

    In this Issue – September 2024

    September 26, 2024
  • Opinion
  • Events
  • Supplier Spotlight
  • Webinars
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn Facebook
Subscribe
Automotive Powertrain Technology International
Features

Interview: Michael Wein, project leader, All-Wheel Drive Control Systems, Audi

Henry WillisBy Henry WillisAugust 17, 20207 Mins Read
LinkedIn Twitter Facebook Email
Share
LinkedIn Twitter Facebook Email

Since the 1980s, Audi has pioneered its quattro technology – a permanent, all-wheel drive system deployed in passenger cars and in motorsport. The brand is moving into the next era of powertrain design with a new electric vehicle and e-tron line, and has outlined its intent to continue developing quattro solutions for EVs. The company mass-produces the all-wheel drive system that it says is highly variable, dynamic and precise while making efficient use of the available energy as an ideal application for electric powertrains.

Michael Wein, product leader – all-wheel drive control systems at Audi, has shared some insights into how the quattro technology will continue to be used by the marque.

Why does Audi use electric all-wheel drive?
For us, the electric quattro is the perfect combination of powerful performance and high efficiency.

We combine the efficiency advantages of a driven axle with the traction and dynamic performance of an all-wheel drive system. In the current e-tron model range, only the rear wheels propel the car in good traction conditions, while the motor for the front-wheel drive concurrently runs without being energised.

Since the motor is an asynchronous type, there are no inherent electrical drag losses, so this drive layout consumes a correspondingly low amount of energy. The front axle, within milliseconds and unnoticeably for the driver, is additionally activated only as needed – for instance, when there is a demand for high driving dynamics, high torque transfer, or in the case of a low coefficient of friction due to wetness, mud or snow.

What is so unique about electric quattro drive compared to competitors?
Audi is the first manufacturer to enable highly variable torque distribution in the e-tron S due to the drive topology featuring one motor at the front axle and two electric motors installed in a housing on the rear axle. In combination with sophisticated control and regulation, the electric quattro, due to its single-axle operation with variable, unnoticeably additional activation of the front axle, resolves the conflicting aims of dynamic performance and efficiency.

Audi integrates functions such as electric torque vectoring on the rear axle, wheel-selective torque control due to a braking intervention with the mechanical differential, and high recuperation performance in an electric powertrain. Additionally, drivers can adjust the high variability of the system to their personal preferences by individual program selections.

When do e-tron and e-tron S models activate their electric all-wheel drive?
The electric all-wheel drive is active in situations of degrading grip on road surfaces with low coefficients of friction, in particularly dynamic driving conditions, when the driver demands high traction power, or when maximum recuperation is desired – in other words, the recovery of energy during braking and deceleration.

If the driver decelerates the car to a level of 0.3g, the electric motors act as generators, using the car’s kinetic energy and converting it into electrical energy which, in turn, charges the battery. This applies to more than 90% of all braking maneuvers in everyday driving situations. Only when stronger pedal pressure is applied, the system additionally and seamlessly activates the hydraulic wheel brakes. For instance, in a braking event at 100km/h (62mph), the e-tron S can recover kinetic energy with output of up to 270kW, compared with 250kW in the Formula E electric racing series.

If the driver demands full power while accelerating, the e-tron S models provide a total boost of 370kW and torque of 973Nm. Whether in drive or recuperation mode: interconnected control models always select the best torque distribution.

What opportunities does electric quattro open up compared to conventional all-wheel drive?
In the Audi e-tron models, one electric motor each drives the front and rear axle. By contrast, the e-tron S versions use one motor on the front axle and two on the rear axle. With electric torque vectoring – in other words, specific torque development left and right – the e-tron S provides quattro drive on the rear axle with even greater agility.

The key advantage: without a mechanical connection between the two electric motors on the rear axle, the functions of a controlled transverse differential lock and thus the functions of a sport differential have been achieved within a single system purely by means of software-based activation. Consequently, thanks to intelligent drive control, Audi has implemented active and fully variable torque distribution in transverse direction on the rear axle.

How did Audi achieve this high variability in the electric drive system?
Audi combines an electric powertrain architecture – a novelty in high-volume production – with sophisticated control units in which all the key software components and their network integration have been developed in-house. Compared with a mechanical all-wheel drive, this results in a fast-response drive system. For instance, latency in the case of electric torque vectoring – in other words, the time gap between the sensor measurement and active torque distribution – amounts to just 30ms. This is merely around a fourth of the response time of a mechanical system. In addition, electric drives provide clearly higher torque levels.

Up to 220Nm more torque can be allocated to the outside wheel in a cornering situation which, due to the transfer ratio, equates to as much as 2,100Nm per wheel. This is how the drive system generates the desired yaw moment in cornering: the car correspondingly rotates around the vertical axis in the cornering direction and thus feels particularly agile.

When the coefficient of friction on snow or ice is low, traction can be optimized with great precision as well: the respective friction coefficient of the driven wheels is measured and, due to the torque allocation, used in an ideal way, thus enhancing overall traction.

How is this precision control achieved?
Intelligent interlinking is the prerequisite for this software function. The drive control unit (DCU) distributes torque between the electric motors. The best possible energy conversion efficiency is decisive for optimizing efficiency. The integrating control unit of the Electronic Chassis Platform (ECP) uses sensor signals to monitor the car’s driving condition and calculates the ideal distribution of longitudinal and lateral torque.

It integrates the vehicle dynamics control of the quattro, in other words, electric torque vectoring as well as wheel-selective torque control via the braking intervention on the front axle. At the dynamic limit, on the e-tron S, the wheel brake slightly decelerates the inside front wheel in cornering and on the e-tron, the front and rear wheels. Thus, via the effect of the mechanical axle differential, more torque is distributed to the outside and the car follows the steering command in the cornering direction with particular agility.

The traction control system (TCR) acts at one-millisecond intervals. This is achieved because individual functional components of the electronic stability control (ESC) have been shifted into power electronics directly on the electric motors. The drive control unit coordinates the traction control system and the all-wheel controller, whereby the engineers gave priority to agile handling with a dynamic basic layout.

Can the driver influence the characteristics of the electric quattro?
Drivers can adapt the electric quattro as desired via two controllers. The Audi drive select system, which is standard equipment for the e-tron models, offers seven profiles: comfort, auto, dynamic, efficiency, individual, allroad and offroad. Thus, among other things, the electric all-wheel drive as well as the suspension and other systems can be adapted to the road conditions and personal preferences. The electronic stability control (ESC) system contains four programs: Normal, Sport, Offroad and Off. In offroad conditions, it optimizes stability, traction and brake control, and activates the standard hill descent control system.

In addition, drivers can select three levels of deceleration recuperation: In level 0, the car coasts; in level 1, the car slightly decelerates. In level 2, which has a deceleration range of up to 0.13g and recuperates the largest amount of energy, drivers experience a strong one-pedal feel. In manual mode, the car retains the previously selected recuperation level.

Share. LinkedIn Twitter Facebook Email

Related Posts

GaN: The next frontier

February 27, 2025

Tech Insider: VAG EA888 Evo 5

December 30, 2024

Tech Insider: Bugatti Cosworth V16

December 28, 2024
LATEST NEWS

Simplify product development for different vehicle segments with Marelli

April 22, 2025

Genesis Magma Racing fires up WRC-derived LMDh V8 for first time

April 22, 2025

Upfit UTV and OMMI launch off-road hybrid system

April 17, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Tula Technology
Featured Listings
  • Wattalps
Getting in Touch
  • Contact Us
  • Download Media Pack
  • Meet the Editors
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
Related UKi Topics
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by